La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Les candidats sont invités à encadrer, dans la mesure du possible, les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document ni d'AUCUNE DISCUSSION sous peine d'annulation de leurs copies; seule l'utilisation d'une règle graduée est autorisée. L'utilisation de toute calculatrice et de tout matériel électronique est interdite. Les téléphones portables doivent être éteints.

Le devoir est composé de 3 pages et de quatres exercices indépendants qui peuvent être traités dans l'ordre souhaité par le candidat.

Durée du devoir : 4h

Bonne chance

EXERCICE I (EML 1996)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^{2x} + 1}$

- 1. (a) Justifier que f est C^1 sur \mathbb{R} et etudier les variations de f.
 - (b) Montrer que l'équation f(x) = x admet une unique solution ℓ .
 - (c) Justifier que : $0 \le \ell \le \frac{1}{2}$

Données numériques : $e^{1/2} \simeq 1.65 \pm 10^{-2}$ et $e \simeq 2.72 \pm 10^{-2}$

- (d) Montrer que pour tout réel x positif : $0 \le |f'(x)| \le f(x)$ puis que $f(x) \le \frac{1}{2}$. En déduire que $\forall x \ge 0$, $|f'(x)| \le \frac{1}{2}$.
- (e) Vérifier que $f\left(\left[0,\frac{1}{2}\right]\right)\subset \left[0,\frac{1}{2}\right]$
- 2. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par:

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$

- (a) Montrer que, pour tout $n \in \mathbb{N}$, $u_n \in [0, \frac{1}{2}]$
- (b) Montrer que, pour tout $n \in \mathbb{N}$:

$$|u_{n+1} - \ell| \le \frac{1}{2} |u_n - \ell|$$
 puis que $|u_n - \ell| \le \frac{1}{2^{n+1}}$

(c) En déduire que la suite (u_n) converge vers ℓ .

EXERCICE II (ESCP 1990)

Soit f la fonction numérique définie sur $[0, +\infty[$ par la relation : $f(t) = \ln(1+t) + \frac{t^2}{1+t^2}$.

- 1. (a) Étudier les variations de f(On n'hésitera pas à écrire f'(t) sous la forme $\frac{A(t)}{(1+t)(1+t^2)^2}$)
 - (b) Déterminer la limite du rapport $\frac{f(t)}{t}$ lorsque t tend vers $+\infty$. Tracer la courbe représentative de f.
- 2. Soit n un entier naturel non nul. On considère l'équation : $(E_n): f(t) = \frac{1}{n}$
 - (a) Montrer que l'équation (E_n) admet une solution α_n et une seule.
 - (b) Déterminer le sens de variation puis expliciter la limite de la suite $(\alpha_n)_{n\in\mathbb{N}^{\times}}$.
 - (c) Déterminer la limite du rapport $\frac{f(t)}{t}$ lorsque t tend vers 0 par valeurs strictement positives. En déduire $\lim_{n\to+\infty} \frac{f(\alpha_n)}{\alpha_n}$ puis la limite de la suite $(n\alpha_n)_{n\in\mathbb{N}^{\times}}$.

EXERCICE III (EDHEC 2004)

Dans ce problème, la lettre n désigne un entier naturel non nul.

On note f_n la fonction définie sur \mathbb{R} par : $f_n(x) = x^2 \exp(-\frac{n^2}{x^2})$ si $x \neq 0$ et $f_n(0) = 0$.

- 1. (a) Montrer que f_n est de classe C^1 sur \mathbb{R}^{\times} et expliciter $f'_n(x)$
 - (b) Justifier que f_n est continue en 0.
 - (c) Déterminer $\lim_{x\to 0} \left[\frac{1}{x} \exp(-\frac{n^2}{x^2}) \right]$
 - (d) Montrer que la fonction f_n est de classe C^1 sur \mathbb{R} .
- 2. (a) Pour tout réel x non nul, calculer $f'_n(x)$ puis étudier son signe
 - (b) Calculer les limites de f_n en $+\infty$ et $-\infty$ puis donner le tableau de variation de f_n .
- 3. (a) Rappeler le développement limité à l'ordre 2 de e^u lorsque u est au voisinage de 0.
 - (b) En déduire que, lorsque x est au voisinage de $+\infty$ ou au voisinage de $-\infty$, on a :

$$f_n(x) \underset{x \to \pm \infty}{=} x^2 - n^2 + \frac{n^4}{2x^2} + o(\frac{1}{x^2}).$$

- (c) En déduire qu'au voisinage de $+\infty$, ainsi qu'au voisinage de $-\infty$, (C_n) admet une asymptote "oblique" (D_n) dont on donnera une équation.
- 4. (a) Montrer qu'il existe un unique réel strictement positif, que l'on notera u_n , tel que $f_n(u_n) = 1$.
 - (b) Vérifier que, pour tout n de \mathbb{N}^{\times} , u_n est strictement supérieur à 1
 - (c) Montrer que pour $n \ge 2$, $u_n \ge \frac{n}{\sqrt{2 \ln n}}$ et en déduire la limite de la suite u_n .
 - (d) Justifier que u_n est solution de l'équation $(F_n): 2x^2 \ln x = n^2$
 - (e) Justifier la relation $2 \ln u_n + \ln(\ln u_n) + \ln 2 = 2 \ln n$, puis montrer que $\ln u_n \underset{n \to +\infty}{\sim} \ln n$. En déduire, à l'aide de la question précédente, un équivalent de u_n lorsque n est au voisinage de $+\infty$.

EXERCICE IV (Ecricome 1996 adapté)

On dispose de deux urnes A et B : initialement l'urne A contient N boules noires tandis que l'urne B contient N boules blanches, avec $N \geqslant 2$. On y effectue une suite d'épreuves, chaque épreuve étant réalisée de la façon suivante .

On tire au hasard une boule dans chacune des deux urnes, la boule tirée de l'urne A est mise dans B, celle tirée de B est mise dans A.

On appelle Y_k la variable aléatoire égale au nombre de boules noires présentes dans l'urne A à l'issue de la $k^{i\`{e}me}$ épreuve et l'on pose $Z_k = Y_{k-1} - Y_k$, pour k entier naturel non nul, avec la convention $Y_0 = N$.

On remarquera que Z_k représente la différence algébrique de boules noires dans l'urne A entre la fin de la $(k-1)^{i\grave{e}me}$ épreuve et la $k^{i\grave{e}me}$ épreuve

Partie 1 : Etude du cas particulier N=2

Ainsi, la variable Y_k prend ses valeurs dans $\{0, 1, 2\}$. On pose $a_k = p(Y_k = 0)$, $b_k = P(Y_k = 1)$ et $c_k = P(Y_k = 2)$. En particulier, $a_0 = 0$, $b_0 = 0$ et $c_0 = 1$.

- 1. Déterminer la loi de Y_1
- 2. Calculer les neuf probabilités conditionnelles $P_{(Y_k=j)}(Y_{k+1}=i)$ lorsque $i \in \{0,1,2\}$ et $j \in \{0,1,2\}$ (c'est-à-dire, calculer $P_{(Y_k=0)}(Y_{k+1}=0)$, $P_{(Y_k=0)}(Y_{k+1}=1)$, etc. et on justifiera rapidement les calculs)
- 3. Exprimer a_{k+1} en fonction de a_k, b_k et c_k . Faire de même avec b_{k+1} et c_{k+1} .
- 4. Explicitation des suites $(a_k)_k$, $(b_k)_k$ et (c_k) .
 - (a) Que vaut $a_k + b_k + c_k$? En déduire que $\forall k \in \mathbb{N}, b_{k+1} = 1 \frac{1}{2}b_k$.
 - (b) Exprimer b_k en fonction de k puis a_{k+1} et c_{k+1} en fonction de k. En déduire l'expression de a_k et b_k lorsque $k \in \mathbb{N}^{\times}$.
- 5. Montrer que l'espérance $E(Y_k)$ de la variable Y_k est constante.
- 6. Calculer la variance $V(Y_k)$ de la variable Y_k en fonction de k et sa limite quand k tend vers $+\infty$.
- 7. Etude de la loi de Z_k lorsque $k \geqslant 1$.
 - (a) Déterminer $Z_k(\Omega)$.
 - (b) Quelle est l'espérance de Z_k ?
 - (c) Donner la loi de Z_k .

Partie 2 : Etude de $E(Y_k)$ et $E(Z_k)$ lorsque N=5

1. Justifier que $Z_k(\Omega) = \{-1, 0, 1\}$. Calculer les probabilités conditionnelles :

$$P(Z_k = 1/Y_{k-1} = j)$$
 et $P(Z_k = -1/Y_{k-1} = j)$

pour $j \in [0, 5]$ et $k \in \mathbb{N}^{\times}$.

- 2. En appliquant la formule des probabilités totales avec le système complet d'évènements $(Y_{k-1}=0), (Y_{k-1}=1), ..., (Y_{k-1}=5)$, exprimer $P(Z_k=1)$ et $P(Z_k=-1)$ en fonction des probabilités $P(Y_{k-1}=0), P(Y_{k-1}=1), ..., P(Y_{k-1}=5)$.
- 3. En déduire que $\forall k \in \mathbb{N}^{\times}, \qquad E(Z_k) = \frac{2}{5}E(Y_{k-1}) 1.$
- 4. Justifier alors que la suite $(E(Y_k))_k$ est arithmético-géométrique.
- 5. Donner l'expression de $E(Y_k)$ et de $E(Z_k)$ en fonction de k.
- 6. Montrer que les suites $(E(Y_k))_{k\in\mathbb{N}^\times}$ et $(E(Z_k))_{k\in\mathbb{N}^\times}$ sont convergentes et donner leur limite quand k tend vers $+\infty$.