Trigonométrie

Exercice 1

Placer sur le cercle trigonométrique les points correspon-

dants aux réels suivants
$$-\frac{2\pi}{3}$$
, $\frac{3\pi}{4}$, $\frac{17\pi}{2}$, $\frac{19\pi}{6}$, $-\frac{39\pi}{4}$.

Exercice 2

Placer sur un cercle trigonométrique les points correspondant aux réels suivants, $k \in \{0, ...9\}$:

$$\frac{k\pi}{2}$$
, $\frac{\pi}{3} + 2k\pi$, $\frac{\pi}{4} + k\pi$, $-\frac{\pi}{6} + \frac{k\pi}{2}$.

Exercice 3

Donner les valeurs exactes de $cos(\frac{3\pi}{4})$, $sin(\frac{4\pi}{3})$, $tan(-\frac{\pi}{6}), cos(\frac{19\pi}{6}), sin(\frac{17\pi}{4}), tan(\frac{20\pi}{3}).$

Exercice 4

Exprimer en fonction de sinx et cosx les expressions suivantes:

- (a) $sin(-x) + 2sin(\pi x)$, (b) $cos(-x) + cos(\pi + x)$,
- (c) $sin(\frac{5\pi}{2} x) + cos(3\pi x),$ (d) $cosxcos(\frac{5\pi}{2} + x) + cos(x \frac{7\pi}{2}).$

Exercice 5

Représenter graphiquement les solutions des équations ou inéquations suivantes :

(a)
$$cost > 0$$
, (b) $sint \le 0$, (c) $sint > \frac{1}{3}$.

Exercice 6

Résoudre dans $[0, 2\pi]$ les équations ou inéquations suiv-

- antes: (a) $cost = \frac{1}{2}$ (b) $sin(4x) = \frac{1}{2}$ (c) sinx = cos(3x) (d) tan2x = 1, (e) $cos(2x) \ge \frac{1}{2}$ (f) $sin(2x \frac{\pi}{6}) = \frac{1}{2}$ (g) $cos(x + \frac{\pi}{3}) = cos(\frac{\pi}{3} 2x)$
- (h) $2\cos^2 x \cos x 1 = 0$
- $(i) \sqrt{3}tan(x \frac{\pi}{c}) = 1$
- (k) $2\sin^2 x 3\sin x + 1 > 0$

Exercice 7

Montrer que les fonctions suivantes sont périodiques de période T:

$$x \mapsto cos(6x+1)$$
 $x \mapsto sinxcosx$ $x \mapsto sin(2\pi x)$
 $T = \frac{\pi}{3}$ $T = \pi$ $T = 1$

Exercice 8

Eudier la parité des fonctions suivantes :

$$f(x) = \sin x + \cos x \qquad g(x) = \frac{\sin 2x}{2x}$$
$$h(x) = x \tan x + \cos x \quad k(x) = 1 + \sin x$$

Polynômes

Exercice 9

Quels sont les polynômes P de degré 4 tels que $\int P$ soit une fonction paire

et
$$P(1) = 4$$
 et $P(-2) = 31$

Exercice 10

Factoriser les polynômes suivants

- 1. $P(x) = x^3 2x^2 11x + 12$
- 2. $Q(x) = x^4 x^3 7x^2 + x + 6$

Exercice 11

Soit le polynôme $P(x) = 3x^4 + 12x^3 + 13x^2 + 4x + 4$. Montrer que -2 est une racine de P de multiplicité 2 et factoriser P.

Exercice 12

Soit $a \in \mathbb{R}$ et $P(x) = x^3 + (2 - 2a)x^2 + a(a - 4)x + 2a^2$ un polynôme.

Montrer a est une racine de P d'ordre de multiplicité au moins égale à 2 et factoriser P.

Exercice 13

- 1. Soit $P(x) = ax^2 + bx + c$ un polynôme de degré 2 possédant deux racines réelles α et β .
 - (a) Factoriser le polynôme P puis en développant l'expression obtenue, exprimer $\alpha + \beta$ et $\alpha\beta$ en fonction de a, b et c.
 - (b) Réciproquement, soient α et β deux nombres réels tels que

$$\alpha + \beta = S$$
 et $\alpha \beta = P$.

Montrer que α et β sont les racines du polynôme $P(x) = x^2 - Sx + P$.

(c) Applications:

Déterminer l'âge de Marc et Sophie sachant que Marc est le plus âgé, que la somme de leurs âges est égale 28 et le produit de leurs âges est égale à 192.

Résoudre les systèmes suivants

$$\begin{cases} lnx + lny = 5 \\ lnx \times lny = 4. \end{cases} \begin{cases} e^x + e^y = \frac{7}{2} \\ e^{x+y} = \frac{5}{2}. \end{cases}$$

- 2. Soit $P(x) = ax^3 + bx^2 + cx + d$ un polynôme de degré 3 possédant deux racines réelles α, β et γ .
 - (a) Factoriser le polynôme P puis en développant l'expression obtenue, exprimer $\frac{b}{a}$, $\frac{c}{a}$ et $\frac{d}{a}$ en fonction de α, β et γ .
 - (b) **Applications**:

Déterminer tous les nombres x, y et z tels que

$$\begin{cases} x+y+z=9\\ xy+yz+zx=-12\\ xyz=-20 \end{cases}$$