CHAMBRE DE COMMERCE ET D'INDUSTRIE DE PARIS

DIRECTION DE L'ENSEIGNEMENT

Direction des Admissions et concours

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON

CONCOURS D'ADMISSION SUR CLASSES PREPARATOIRES

OPTION ECONOMIQUE MATHEMATIQUES III

Année 2004

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

EXERCICE

On désigne par E l'espace vectoriel \mathbb{R}^6 et par \mathcal{B} sa base canonique : $\mathcal{B} = (e_1, e_2, e_3, e_4, e_5, e_6)$.

On pose $\mathcal{B}_1 = (e_1, e_2, e_3)$ et $\mathcal{B}_2 = (e_4, e_5, e_6)$, et on désigne respectivement par E_1 et E_2 les sous-espaces vectoriels de E engendrés par \mathcal{B}_1 et \mathcal{B}_2 .

Enfin, A est la matrice carrée d'ordre 3 à coefficients réels suivante :

$$\begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ -2 & 2 & -1 \end{pmatrix}$$

- 1. Soit u l'endomorphisme de E_1 dont la matrice dans la base \mathcal{B}_1 est A. Déterminer les valeurs propres de u ainsi qu'une base de vecteurs propres.
- 2. Soit f l'application linéaire de E_1 vers E_2 définie par : $f(e_1) = e_4$, $f(e_2) = e_5$ et $f(e_3) = e_6$. Montrer que f est un isomorphisme et déterminer la matrice de son isomorphisme réciproque f^{-1} relativement aux bases \mathcal{B}_2 et \mathcal{B}_1 .
- 3. (a) Montrer que, si (x_1, x_2) est un élément de $E_1 \times E_2$ vérifiant l'égalité $x_1 + x_2 = 0$, les vecteurs x_1 et x_2 sont nuls
 - (b) En déduire que, si (x_1, x_2) et (y_1, y_2) sont deux éléments de $E_1 \times E_2$ vérifiant l'égalité $x_1 + x_2 = y_1 + y_2$, alors on a : $x_1 = y_1$ et $x_2 = y_2$.
- 4. Pour tout vecteur x de E dont les coordonnées dans la base \mathcal{B} sont $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6)$, on pose :

$$\begin{cases} x_1 = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 \\ x_2 = \lambda_4 e_4 + \lambda_5 e_5 + \lambda_6 e_6 \end{cases} \text{ et } F(x) = u(x_1) + f(x_1) + f^{-1}(x_2)$$

- (a) Prouver que l'application F qui à tout vecteur x de E associe le vecteur F(x), est un endomorphisme de E.
- (b) Déterminer le noyau de F et en déduire que F est un automorphisme.
- (c) Montrer que la matrice M de F dans la base \mathcal{B} peut s'écrire sous la forme :

$$M = \begin{pmatrix} 0 & 2 & 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ -2 & 2 & -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

- 5. On suppose, dans cette question, que μ est une valeur propre de F et que x est un vecteur propre associé à μ ; on définit les vecteurs x_1 de E_1 et x_2 de E_2 comme dans la question précédente.
 - (a) Justifier que la valeur propre μ n'est pas nulle.
 - (b) Utiliser les résultats de la question 3 pour prouver que les vecteurs x_1 et x_2 sont tous les deux non nuls et que x_1 est un vecteur propre de u associé à la valeur propre $\mu \frac{1}{\mu}$.
- 6. Étudier la fonction φ définie sur \mathbb{R}^{\times} par $\varphi(x) = x \frac{1}{x}$ et en donner une représentation graphique.
- 7. On suppose, dans cette question, que λ est une valeur propre de u et que x_1 est un vecteur propre de u associé à λ .
 - (a) Montrer que l'équation d'inconnue μ suivante : $\lambda = \mu \frac{1}{\mu}$ admet deux solutions distinctes μ_1 et μ_2 .
 - (b) Montrer que μ_1 et μ_2 sont des valeurs propres de F. Donner, en fonction de x_1 , un vecteur propre de F associé à μ_1 et un vecteur propre de F associé à μ_2 .
- 8. La matrice M est-elle diagonalisable?

PROBLÈME

Dans tout le problème, r désigne un entier naturel vérifiant $1 \le r \le 10$. Une urne contient 10 boules distinctes B_1, B_2, \ldots, B_{10} . Une expérience aléatoire consiste à y effectuer une suite de tirages d'une boule **avec remise**, chaque boule ayant la même probabilité de sortir à chaque tirage. Cette expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$.

Partie I : Etude du nombre de tirages nécessaires pour obtenir au moins une fois chacune des boules B_1, \ldots, B_r

On suppose que le nombre de tirages nécessaires pour obtenir au moins une fois chacune des boules B_1, \ldots, B_r définit une variable aléatoire Y_r sur $(\Omega, \mathcal{A}, \mathbf{P})$.

- 1. Cas particulier r=1. Montrer que la variable aléatoire Y_1 suit une loi géométrique; préciser son paramètre, son espérance et sa variance.
- 2. On suppose que r est supérieur ou égal à 2.
 - (a) Calculer la probabilité pour que les r boules B_1, B_2, \ldots, B_r sortent dans cet ordre aux r premiers tirages.
 - (b) En déduire la probabilité $\mathbf{P}([Y_r = r])$.

- (c) Préciser l'ensemble des valeurs que peut prendre la variable aléatoire Y_r .
- 3. On suppose encore que r est supérieur ou égal à 2. Pour tout entier i vérifiant $1 \le i \le r$, on désigne par W_i la variable aléatoire représentant le nombre de tirages nécessaires pour que, pour la première fois, i boules distinctes parmi les boules B_1, B_2, \ldots, B_r soient sorties (en particulier, on a : $W_r = Y_r$).

On pose: $X_1 = W_1$ et, pour tout i vérifiant $2 \le i \le r$, $X_i = W_i - W_{i-1}$.

On admet que les variables aléatoires X_1, \ldots, X_r sont indépendantes.

- (a) Exprimer la variable aléatoire Y_r à l'aide des variables aléatoires X_1, \ldots, X_r .
- (b) Interpréter concrètement la variable aléatoire X_i pour tout i vérifiant $1 \leq i \leq r$.
- (c) Montrer que, pour tout i vérifiant $1 \le i \le r$, la variable aléatoire X_i suit une loi géométrique; préciser son espérance et sa variance.
- (d) On pose : $S_1(r) = \sum_{k=1}^r \frac{1}{k}$ et $S_2(r) = \sum_{k=1}^r \frac{1}{k^2}$ Exprimer l'espérance $\mathbf{E}(Y_r)$ et la variance $\mathbf{V}(Y_r)$ de Y_r à l'aide de $S_1(r)$ et de $S_2(r)$.
- 4. (a) Si k est un entier naturel non nul, préciser le minimum et le maximum de la fonction $t \mapsto \frac{1}{t}$ sur l'intervalle [k, k+1] et en déduire un encadrement de l'intégrale $\int_{k}^{k+1} \frac{1}{t} dt$.
 - (b) Si r est supérieur ou égal à 2, donner un encadrement de $S_1(r)$ et en déduire la double inégalité :

$$10\ln(r+1) \leqslant \mathbf{E}(Y_r) \leqslant 10(\ln r + 1)$$

(c) Si r supérieur ou égal à 2, établir par une méthode analogue à celle de la question précédente, la double inégalité :

$$1 - \frac{1}{r+1} \leqslant S_2(r) \leqslant 2 - \frac{1}{r}$$

En déduire un encadrement de $\mathbf{V}(Y_r)$.

Partie II : Etude du nombre de boules distinctes parmi les boules B_1, B_2, \ldots, B_r tirées au moins une fois au cours des n premiers tirages

Pour tout entier n supérieur ou égal à 1, on suppose que le nombre de boules distinctes parmi les boules B_1, B_2, \ldots, B_r tirées au moins une fois au cours des n premiers tirages, définit une variable aléatoire Z_n sur $(\Omega, \mathcal{A}, \mathbf{P})$; on note $\mathbf{E}(Z_n)$ l'espérance de Z_n et on pose $Z_0 = 0$.

Pour tout entier naturel n non nul et pour tout entier naturel k, on note $p_{n,k}$ la probabilité de l'événement $[Z_n = k]$ et on pose : $p_{n,-1} = 0$.

- 1. Etude des cas particuliers n = 1 et n = 2.
 - (a) Déterminer la loi de Z_1 et donner son espérance.
 - (b) On suppose, dans cette question, que r est supérieur ou égal à 2. Déterminer la loi de Z_2 et montrer que son espérance est donnée par : $\mathbf{E}(Z_2) = \frac{19 \, r}{100}$
- 2. Établir, pour tout entier naturel n non nul et pour tout entier naturel k au plus égal à r, l'égalité :

$$10 p_{n,k} = (10 - r + k) p_{n-1,k} + (r+1-k) p_{n-1,k-1}$$
(1)

Vérifier que cette égalité reste vraie dans le cas où k est supérieur ou égal à r+1.

3. Pour tout entier naturel non nul n, on définit le polynôme Q_n par : pour tout réel x,

$$Q_n(x) = \sum_{k=0}^{n} p_{n,k} x^k$$
, et on pose $Q_0(x) = 1$.

- (a) Préciser les polynômes Q_1 et Q_2 .
- (b) Calculer $Q_n(1)$ et exprimer $Q'_n(1)$ en fonction de $\mathbf{E}(Z_n)$ (Q'_n désignant la dérivée du polynôme Q_n).
- (c) En utilisant l'égalité (1), établir, pour tout réel x et pour tout entier naturel n non nul, la relation suivante :

$$10Q_n(x) = (10 - r + rx)Q_{n-1}(x) + x(1 - x)Q'_{n-1}(x)$$
(2)

(d) En dérivant membre à membre l'égalité (2), former, pour tout entier naturel n non nul, une relation entre les espérances $\mathbf{E}(Z_n)$ et $\mathbf{E}(Z_{n-1})$.

En déduire, pour tout entier naturel n, la valeur de $\mathbf{E}(Z_n)$ en fonction de n et de r.

4. (a) Pour tout entier naturel n, le polynôme Q''_n désigne la dérivée du polynôme Q'_n. En utilisant une méthode semblable à celle de la question précédente, trouver pour tout entier naturel n non nul, une relation entre Q''_n(1) et Q''_{n-1}(1). En déduire que, pour tout entier naturel n non nul, l'égalité suivante :

$$Q_n''(1) = r(r-1)\left[1 + \left(\frac{8}{10}\right)^n - 2\left(\frac{9}{10}\right)^n\right]$$

(b) Calculer, pour tout entier naturel n, la variance de la variable aléatoire Z_n en fonction de n et de r.