ÉCOLE SUPÉRIEURE LIBRE DES SCIENCES COMMERCIALES APPLIQUÉES

MATHÉMATIQUES 2ème ÉPREUVE

OPTIONS: GENERALE (2h)

Exercice 1

On note \mathbb{Z} l'ensemble des entiers rationnels, \mathbb{R} l'ensemble des nombres réels, $(e_1, e_2, ..., e_n)$ la base canonique de $\mathbb{R}^n \ (n \geqslant 2).$

Soient $x = (x_1, x_2, ..., x_n)$ et $y = (y_1, y_2, ..., y_n)$ deux éléments de \mathbb{R}^n . On pose

$$f(x,y) = x_1y_1 + x_2y_2 + \dots + x_ny_n.$$

On considère \mathbb{Z}^n comme sous-groupe du groupe additif \mathbb{R}^n .

1. Soit Φ l'homorphisme canonique de \mathbb{Z} sur $\mathbb{Z}/2\mathbb{Z}$ Si $x = (x_1, x_2, ..., x_n)$ est un élément de \mathbb{Z}^n , on pose

$$\theta(x) = \Phi(x_1 + x_2 + \dots + x_n).$$

Montrer que θ est un homorphisme de \mathbb{Z}^n sur $\mathbb{Z}/2\mathbb{Z}$.

Déterminer son noyau K et son image.

Quel est le nombre d'éléments du groupe \mathbb{Z}^n/K ?

2. Montrer que K est l'ensemble des éléments x de \mathbb{Z}^n tels que f(x,x) soit pair, et aussi le sous-groupe de \mathbb{Z}^n engendré par les vecteurs

$$e_i - e_n, \quad e_i + e_n \qquad (1 \leqslant i \leqslant n - 1)$$

- 3. Soit S l'ensemble des éléments x de \mathbb{Z}^n tels que f(x,x)=1 ou f(x,x)=2. Déterminer les éléments de S et leur nombre.
- 4. On pose

$$a_1 = e_1 - e_2$$
, $a_2 = e_2 - e_3$, ..., $a_{n-1} = e_{n-1} - e_n$, $a_n = e_n$.

Montrer que les vecteurs $(a_i)_{1 \leq i \leq n}$ forment une base de \mathbb{R}^n . Etant donné un élément $(x_1, x_2, ..., x_n)$ de \mathbb{R}^n , calculer ses coordonnées par rapport à la base $(a_1, a_2, ..., a_n)$?

Exprimer les éléments de S comme combinaison linéaire des vecteurs $(a_i)_{1 \le i \le n}$

5. Soit V le sous-espace vectoriel de \mathbb{R}^n de base $(a_1, a_2, ..., a_{n-1})$. Quelle relation vérifient les coordonnées d'un vecteur x de V par rapport à la base $(e_1, e_2, ..., e_n)$.

On pose $T = S \cap V$. Déterminer les éléments de T et leur nombre. Calculer f(x,x) pour un élément de T. On pose $a'_n = e_1 + e_2 + \cdots + e_n$, montrer que V est l'ensemble des éléments x de \mathbb{R}^n tels que $f(x, a'_n) = 0$ Montrer que $(a_1, a_2, ..., a_{n-1}, a'_n)$ est une base de \mathbb{R}^n .

6. Soit i un entier tel que $1 \le i \le n-1$. Montrer qu'il existe un vecteur b_i de \mathbb{R}^n , et un seul, tel que

(1)
$$f(b_i, a_j) = \delta_{i,j}$$
 pour $1 \leqslant j \leqslant n - 1$ et
(2) $f(b_i, a'_n) = 0$

$$(2) f(b_i, a'_n) = 0$$

On déterminera b_i par ses coordonnées relativement à la base $(e_1, e_2, ..., e_n)$.

7. Montrer en utilisant les relations (1) et (2) que $b_1, b_2, ..., b_{n-1}$ sont linéairement indépendantes et forment une base de V. Exprimer les b_i comme combinaison linéaire de a_i . Pour n=4, calculer la matrice de passage M de la base $(a_1, a_2, ..., a_{n-1})$ à la base $(b_1, b_2, ..., b_{n-1})$.

Exercice 2

Dans un magasin se trouvent quatre lots de pièces dont les proportions de défectueux sont 5%, 5%, 8%, 10%. Les étiquettes ont été perdue. dans chacun des lots, on prélève un échantillon de 10 pièces : l'un des échantillons ne comporte aucun défectueux, deux échantillons comportent un défectueux, un échantillon comporte deux défectueux.

Au vu de ces résultats, on choisit une façon d'affecter les étiquettes.

- 1. Combien y-a-t-il d'affections possibles?
- 2. Pour chacune des affectations, évaluer la probabilité qu'elle soit correcte.

Exercice 3

On se propose d'étudier l'ensemble E des suites (U_n) telles que

$$\forall n \in \mathbb{N}, \quad 2u_{n+2} - 5u_{n+1} + 2u_n = 0$$

- 1. Montrer que l'addition de deux suites et la multiplication d'une suite par un réel confèrent à l'ensemble E une structure d'espace vectoriel sur le corps des réels.
- 2. Montrer qu'une progression géométrique (r^n) , r non nul, appartient à E, si et seulement r vérifie la relation

$$2r^2 - 5r + 2 = 0$$

Calculer les valeurs de r qui répondent à la question.

- 3. Montrer que tout suite $(\lambda 2^{-n} + \mu 2^n)$, où λ et μ désignent deux réels arbitraires, appartient à E.
- 4. Soient a et b deux réels. Montrer qu'il existe dans E au plus une suite (U_n) vérifiant $U_0 = a$ et $U_1 = b$.
- 5. Utiliser le résultat de la question précédente pour montrer qu'à chaque élément (U_n) de E, on peut associer un couple unique (λ, μ) de nombres réels tel que $(U_n) = (\lambda 2^{-n} + \mu 2^n)$.
- 6. Soient a et b deux nombres réels. Montrer qu'il existe dans E une suite (U_n) vérifiant $U_0 = a$ et $U_1 = b$. Application : Calculer λ et μ quand a = 0 et $b = \frac{3}{2}$, puis quand a = 2 et $b = \frac{5}{2}$.