ISC 1990 Option économique et technologique

EXERCICE 1

On considère la série statistique suivante, donnant les cotations du quintal de plomb au London Metal Exchange pendant le mois de Février 1990. (Cours transformés en francs français)

Date	1er	2	5	7	8	9	12	13	14	15	16	19	20	21	22	23	26	27	28
Cours	436	446	443	440	443	455	468	462	468	470	468	484	488	504	532	527	528	495	533

- 1. Représenter le nuage statistique correspondant en plaçant les dates en abscisse. (On fera en sorte de n'utiliser que la moitié de la feuille de papier millimétré jointe).
- 2. Quel est le coefficient de corrélation entre la date et le prix du plomb ? (On indiquera les formules utilisées et les résultats intermédiaires nécessaires à la compréhension du calcul).
- 3. La cotation du 27 Février semblant aberrante, déterminer l'équation de la droite de régression du prix du plomb par rapport à la date obtenue en éliminant de la série statistique la cotation du 27 Février.
- 4. Un industriel doit acheter 10 tonnes de plomb à la date du 5 mars 1990, quel prix estimez-vous qu'il devra payer?

EXERCICE 2

1. Etudier les variations de la fonction φ définie sur \mathbb{R}_+^{\times} par :

$$\varphi(x) = \frac{\ln x}{x}$$

(ln désignant la fonction logarithme népérien).

2. Pour tout valeur du paramètre réel m, on considère la fonction f_m , définie sur \mathbb{R}_+^{\times} par :

$$f_m(x) = x \ln x - x + mx^2$$

- (a) Dire pourquoi f_m est indéfiniment dérivable sur \mathbb{R}_+^{\times} et calculer les deux premières fonctions dérivées f'_m et f''_m .
- (b) Peut-on prolonger f_m par continuité en 0? Cet éventuel prolongement est-il alors dérivable en 0?
- (c) Indiquer, selon les valeurs de m, le nombre de solutions de l'équation $f'_m(x) = 0$. En déduire les différentes formes possibles de la représentation graphique de f_m .
- 3. Représenter graphiquement f_0 , $f_{\ln 2}$, $f_{-\frac{1}{4}\ln 2}$. (On utilisera l'autre moitié de la feuille jointe).

EXERCICE 3

Une urne contient n jetons numérotés de 1 à n, et on effectue des tirages successifs d'un jeton de cette urne avec remise du jeton obtenu avant le tirage suivant.

- 1. On note X_i le numéro aléatoire obtenu au $i^{i\hat{e}me}$ tirage. Quelle est la loi de X_i ? Son espérance?
- 2. Dans cette question, on suppose que l'on a : n = 3, et on effectue deux tirages.

- (a) Dresseer la liste des résultats possibles de cette épreuve.
- (b) On note m le plus petit des deux numéros obtenus et M le plus grand des deux numéros obtenus. Quelles valeurs le couple (m, M) peut-il prendre? Déterminer la loi de ce couple et la loi de M.
- 3. On suppose à nouveau n quelconque, et on effectue k tirages successifs (où k est un entier fixé supérieur ou égal à 2). On note M_k le plus grand numéro obtenu au cours des k tirages.
 - (a) Déterminer la loi de M_k .
 - (b) Exprimer l'espérance de M_k à l'aide d'une somme et déterminer la limite de cette espérance lorsque k tend vers l'infini.

EXERCICE 4

1. Etudier les variations de la fonction g définie sur $\mathbb R$ par :

$$g(x) = x^3 - 5x - 1$$

En déduire que l'équation $x^3 - 5x - 1 = 0$ possède trois racines que l'on notera a, b, c avec a < b < c. (On ne demande pas de calculer a, b, c, mais on en donnera des valeurs approchées à 10^{-1} près).

2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par son premier terme u_0 réel et la relation de récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{5}(u_n^3 - 1)$$

- (a) Montrer que la suite (u_n) est monotone.
- (b) Si la suite (u_n) est convergente, quelles sont les valeurs possibles de sa limite?
- (c) Etudier la suite (u_n) dans les trois cas particuliers suivants :

$$u_0 = -3;$$
 $u_0 = 0;$ et enfin : $u_0 = 3$