MP*: séries de Fourier 1 EXERCICES

1 Exercices

Exercice 1.1 1. Déterminer la série de Fourier de $t \mapsto \left| \sin \frac{t}{2} \right|$.

2. Soit $E = \{ f \in C^0(\mathbb{R}, \mathbb{R}); f \ 2\pi$ -périodique et Φ l'endomorphisme de E défini par :

$$\Phi(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sin(\frac{x-t}{2}) \right| f(t) dt.$$

Trouver les valeurs propres et les vecteurs propres de Φ .

Exercice 1.2 Donner le développement en série de Fourier de $x \mapsto \frac{1}{2-\cos x}$.

En déduire la valeur de $\int_{0}^{2\pi} \frac{\cos nt}{2 - \cos t} dt$

Exercice 1.3 Soit $z \mapsto f(z)$ une fonction continue sur $\overline{D}(0,1)$ et développable en série entière au voisinage de 0

On suppose que
$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$
 avec $R(a_n) \ge 1$ et $\forall n \in \mathbb{N}, \quad a_n \in \mathbb{Z}$

Montrer que $\sum_{n=0}^{+\infty} |a_n|^2 < +\infty$. Conclusion.

Exercice 1.4 Soit $a \in \mathbb{R}$

1. Développer en série de Fourier $f: x \mapsto e^{ax}$ sur $]-\pi,\pi[$ et de période 2π .

2. En déduire la valeur de la somme
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + a^2}$$
 et $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2 + a^2}$

Exercice 1.5 Soit $a \in \mathbb{R}_+^{\times}$, on considère $f(x) = \sum_{n=-\infty}^{+\infty} \frac{1}{\operatorname{ch} a(x+2n\pi)}$

- 1. Justifier que f est développable en série de Fourier.
- 2. Calculer ces coefficients de Fourier.
- 3. En évaluant en x = 0, en déduire une identité remarquable.

Exercice 1.6 Soit
$$a \in \mathbb{R}_+^{\times}$$
, on pose $f(x) = \sum_{n=-\infty}^{+\infty} \exp(-a(x+2\pi n)^2)$

- 1. Justifier que f est développable en série de Fourier.
- 2. Calculer ces coefficients de Fourier.
- 3. En évaluant en x = 0, en déduire une identité remarquable.

MP*: séries de Fourier 2 INDICATIONS

2 Indications

Indication pour l'exercice 1.1:

- 1. Déterminer la série de Fourier de $t\mapsto \left|\sin\frac{t}{2}\right|$.
- 2. Soit $E = \{ f \in C^0(\mathbb{R}, \mathbb{R}); f \ 2\pi$ -périodique et Φ l'endomorphisme de E défini par :

$$\Phi(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sin(\frac{x-t}{2}) \right| f(t) dt.$$

Trouver les valeurs propres et les vecteurs propres de Φ .

Indication pour l'exercice 1.2 : Donner le développement en série de Fourier de $x \mapsto \frac{1}{2 - \cos x}$.

En déduire la valeur de $\int_{0}^{2\pi} \frac{\cos nt}{2 - \cos t} dt$

Indication pour l'exercice 1.3 : Soit $z \mapsto f(z)$ une fonction continue sur $\overline{D}(0,1)$ et développable en série entière au voisinage de 0

On suppose que $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ avec $R(a_n) \ge 1$ et $\forall n \in \mathbb{N}, \quad a_n \in \mathbb{Z}$

Montrer que $\sum_{n=0}^{+\infty} |a_n|^2 < +\infty$. Conclusion.

Indication pour l'exercice 1.4 : Soit $a \in \mathbb{R}$

- 1. Développer en série de Fourier $f: x \mapsto e^{ax}$ sur $]-\pi,\pi[$ et de période 2π .
- 2. En déduire la valeur de la somme $\sum_{n=1}^{+\infty} \frac{1}{n^2+a^2}$ et $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2+a^2}$

Indication pour l'exercice 1.5:

Soit
$$a \in \mathbb{R}_+^{\times}$$
, on considère $f(x) = \sum_{n=-\infty}^{+\infty} \frac{1}{\operatorname{ch} a(x+2n\pi)}$

- 1. Justifier que f est développable en série de Fourier.
- 2. Calculer ces coefficients de Fourier.
- 3. En évaluant en x=0, en déduire une identité remarquable.

Indication pour l'exercice 1.6:

Soit
$$a \in \mathbb{R}_+^{\times}$$
, on pose $f(x) = \sum_{n=-\infty}^{+\infty} \exp(-a(x+2\pi n)^2)$

- 1. Justifier que f est développable en série de Fourier.
- 2. Calculer ces coefficients de Fourier.
- 3. En évaluant en x=0, en déduire une identité remarquable.

MP*: séries de Fourier CORRECTIONS

3 Corrections

Correction de l'exercice 1.1:

1. Déterminer la série de Fourier de $t \mapsto \left| \sin \frac{t}{2} \right|$.

2. Soit $E = \{ f \in C^0(\mathbb{R}, \mathbb{R}); f \ 2\pi$ -périodique et Φ l'endomorphisme de E défini par :

$$\Phi(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sin(\frac{x-t}{2}) \right| f(t) dt.$$

Trouver les valeurs propres et les vecteurs propres de Φ .

Correction de l'exercice 1.2: Donner le développement en série de Fourier de $x \mapsto \frac{1}{2-\cos x}$

En déduire la valeur de $\int_{0}^{2\pi} \frac{\cos nt}{2 - \cos t} dt$

Soit $z \mapsto f(z)$ une fonction continue sur $\overline{D}(0,1)$ et développable en série entière au Correction de l'exercice 1.3: voisinage de 0

On suppose que $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ avec $R(a_n) \geqslant 1$ et $\forall n \in \mathbb{N}, \quad a_n \in \mathbb{Z}$

Montrer que $\sum_{n=0}^{+\infty} |a_n|^2 < +\infty$. Conclusion.

Correction de l'exercice 1.4 : Soit $a \in \mathbb{R}$

1. Développer en série de Fourier $f: x \mapsto e^{ax}$ sur $]-\pi,\pi[$ et de période 2π .

2. En déduire la valeur de la somme
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + a^2}$$
 et $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2 + a^2}$

Correction de l'exercice 1.5:

Soit
$$a \in \mathbb{R}_+^{\times}$$
, on considère $f(x) = \sum_{n=-\infty}^{+\infty} \frac{1}{\operatorname{ch} a(x + 2n\pi)}$

- 1. Justifier que f est développable en série de Fourier.
- 2. Calculer ces coefficients de Fourier.
- 3. En évaluant en x = 0, en déduire une identité remarquable.

Correction de l'exercice 1.6 : Soit
$$a \in \mathbb{R}_+^{\times}$$
, on pose $f(x) = \sum_{n=-\infty}^{+\infty} \exp(-a(x+2\pi n)^2)$

- 1. Justifier que f est développable en série de Fourier.
- 2. Calculer ces coefficients de Fourier.
- 3. En évaluant en x=0, en déduire une identité remarquable.