MP*: suites dans un Banach

1 EXERCICES

1 Exercices

Exercice 1.1 1. Déterminer toutes les fonctions continues sur \mathbb{R} telles que $\forall x \in \mathbb{R}$, $f\left(\frac{x}{2}+1\right) = f(x)$

- 2. Déterminer toutes les fonctions continues sur \mathbb{R} telles que $\forall x \in \mathbb{R}$, f(3x+1) = f(x)
- 3. Soit $a \in \left[0, \frac{1}{4}\right[$.

Déterminer toutes les fonctions continues sur \mathbb{R}_+ telles que $\forall x > 0$, $f(x^2 + a) = f(x)$

Exercice 1.2 Soit $A \in \mathfrak{M}_n(\mathbb{R})$ telle que $3A^3 = A^2 + A + I_n$.

Montrer que la suite $(A^k)_{k\in\mathbb{N}}$ converge et caractériser géométriquement sa limite.

Exercice 1.3 Etudier la convergence de la suite $z_{n+1} = \frac{1}{2}(z_n + |z_n|)$ et $z_0 \in \mathbb{C}$.

Exercice 1.4 Soit $E = \mathbb{R}[X]$. On pose, pour f dans $\mathbb{R}[X]$, $N(f) = \sum_{k=0}^{+\infty} \frac{\left|f^{(k)}(0)\right|}{k!}$.

- 1. Montrer que N est une norme sur E.
- 2. On pose $f_p(X) = \sum_{k=1}^p \frac{X^k}{k^2}$. Montrer que la suite (f_p) est de Cauchy dans (E, N). Converge-t-elle?

Exercise 1.5 On note $E = \{ f \in C(]0,1[) \mid \exists M \in \mathbb{R}_+ \quad \forall t \in]0,1[, \mid f(t)| \leqslant \frac{M}{t} \}$

- 1. Munissez E d'une norme convenable N et montrer que (E, N) est un Banach.
- 2. Soit $g \in E$. Montrer qu'il existe une et une seule fonction f appartenant à E telle que

$$\forall t \in]0,1[, \quad g(t) = f(t) + \frac{1}{6} \left[f\left(\frac{t}{2}\right) + f\left(\frac{t}{3}\right) \right]$$

Exercice 1.6 Etude de la suite $u_{n+1} = u_n + \frac{1}{2}(a - u_n^2), \quad u_0 = 0 \text{ avec } a \in [0, 1].$

Exercice 1.7 Soit p un nombre premier.

Soit x un rationnel non nul, on note $|x|_p = p^{-\alpha}$ si $x = p^{\alpha} \frac{a}{b}$ avec a et b premier avec p et $|0|_p = 0$ par convention.

- 1. Montrer que $\forall x,y \in \mathbb{Q}, \quad |x+y|_p \leqslant |x|_p + |y|_p, \quad |xy|_p = |x|_p \, |y|_p$. On note d_p la distance sur \mathbb{Q} définie par $d_p(x,y) = |x-y|_p$.
- 2. En considérant la suite $S_n = 1 + p + p^2 + \cdots + p^n$, montrer que (\mathbb{Q}, d_p) n'est pas un espace métrique complet.

Exercice 1.8 On note $S = \{a \in \mathbb{R}^{\mathbb{N}} \mid \exists C \in \mathbb{R}_{+}, \forall n \in \mathbb{N}, |a_{n}| \leq C(1+n^{2})\}$

Construire une norme adaptée à S et montrer que S est un espace de Banach pour cette norme.

MP*: suites dans un Banach 2 INDICATIONS

2 Indications

Indisponible actuellement (mais cela va venir)

MP*: suites dans un Banach 3 CORRECTIONS

3 Corrections

Indisponible actuellement (mais cela va venir)