1 Exercices

Exercice 1.1 1. Justifier la convergence de l'intégrale $J = \int_{0}^{1} \frac{dx}{\sqrt{x-x^2}}$ et calculer la

- 2. Justifier la convergence de l'intégrale $I = \int\limits_0^1 \frac{\ln x}{\sqrt{x}(1-x)^{3/2}} dx$.
- 3. Montrer, à l'aide d'une intégration par partie, que I=-J.

Exercice 1.2 1. Discuter, selon les valeurs des réels a et b, la convergence de l'intégrale $\int_{0}^{+\infty} t^{b} \exp(-t^{a}) dt$.

2. Calculer cette intégrale lorsque a=1 et b est un entier naturel.

Exercice 1.3 Pour quelles valeurs du réel $a \ge 0$, l'intégrale $\int_{0}^{+\infty} \frac{\sin(x)}{x^a} dx$ est convergente.

Exercice 1.4 1. Décomposer en élément simple dans \mathbb{C} de la fraction rationnelle $\frac{X^{n-1}}{X^n-1}$

2. Calculer $I(z)=\int\limits_0^{2\pi}\frac{dt}{z-e^{it}}$ à l'aide de somme de Riemann pour $z\in\mathbb{C}$ avec $|z|\neq 1$

2 Indications

Indisponible actuellement (mais cela va venir)

3 Corrections

Indisponible actuellement (mais cela va venir)